Istruzioni: Avete 2 ore e 30' di tempo. Non è sufficiente dare la risposta giusta, dovete fornire delle giiustificazioni. Durante lo svolgimento non si possono usare libri, appunti, calcolatrice, cellulari né altri oggetti elettronici, pena l'annullamento del compito. Buon lavoro!

Esercizio 1. Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ un'applicazione lineare invertibile. Per ciascuna delle seguenti affermazioni, determina se è vera o falsa fornendo una motivazione: se l'affermazione è vera scrivi una dimostrazione, se è falsa fornisci un controesempio (in cui scegli f esplicitamente).

- (1) Se f ha almeno un autovettore, è diagonalizzabile
- (2) Se f è diagonalizzabile, allora f^{-1} è diagonalizzabile,
- (3) Se $\det f < 0$, allora f è diagonalizzabile.

Esercizio 2. Sia $\mathbb{R}_3[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado ≤ 3 . Sia W il sottospazio che consiste di tutti i polinomi p(x) tali che p(1) = 0.

- (1) Determina una base per W,
- (2) Considera l'endomorfismo $f: W \to W$ seguente:

$$f(p(x)) = (x-1)p'(x).$$

L'endomorfismo f è diagonalizzabile?

Esercizio 3. Considera nello spazio i punti

$$P = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad S = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

ed il piano

$$\pi = \{3x - 2y + 5z = 44\}.$$

- (1) Determina la distanza fra $P \in \pi$.
- (2) Determina equazioni cartesiane per il piano π' perpendicolare a π e contenente P e S.

Esercizio 4. Considera la conica C di equazione

$$x^{2} + 6xy + y^{2} + 2x + y + \frac{1}{2} = 0$$

- (1) Determina il tipo di conica.
- (2) Determina il centro C e scrivi l'equazione della conica rispetto ad un sistema di riferimento x', y' in cui C è il nuovo centro.
- (3) Determina gli assi della conica e scrivi l'equazione della conica nel sistema di riferimento x'', y'' in cui il centro è C e gli assi sono gli assi della conica.

Esercizio 1.

(1) No, ad esempio $f = L_A$ con

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (2) Si. Se v_1, v_2 è base di autovettori per f, allora $f(v_1) = \lambda_1 v_1$ e $f(v_2) = \lambda_2 v_2$. Quindi $f^{-1}(v_1) = \lambda_1^{-1} v_1$ e $f^{-1}(v_2) = \lambda_2^{-1} v_2$ e ne deduciamo che v_1, v_2 è base di autovettori anche per l'inversa f^{-1} , con autovalori inversi a quelli di f.
- (3) Si. Il polinomio caratterstico di una matrice 2×2 A è

$$p(\lambda) = \lambda^2 - \operatorname{tr} A\lambda + \det A.$$

Se det A<0 allora questo polinomio ha $\Delta>0$ e quindi due radici distinte. Quindi A ha due autovalori distinti ed è diagonalizzabile.

Esercizio 2. Una base è data dai polinomi

$$(x-1)$$
, $x(x-1)$, $x^2(x-1)$.

La matrice associata in questa base all'endomorfismo f è

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 3 \end{pmatrix}$$

che ha tre autovalori distinti e quindi è diagonalizzabile.

Esercizio 3. La retta r passante per P e ortogonale a π è

$$r = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 3\\-2\\5 \end{pmatrix} \right\}.$$

Si trova che

$$r \cap \pi = \left\{ \begin{pmatrix} 4 \\ -1 \\ 6 \end{pmatrix} \right\}$$

e quindi

$$d(P,\pi) = \sqrt{9+4+25} = \sqrt{38}.$$

Il piano π' è

$$\pi' = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 3\\-2\\5 \end{pmatrix} + u \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right\}$$

ed in coordinate cartesiane diventa

$$\pi' = \{5x + 5y - z = 9\}.$$

Esercizio 4. La matrice che descrive la conica è

$$\bar{A} = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 1 & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

Usando Jacobi si vede che la segnatura è indefinita, e det A=1-9<0 ci dice che è una iperbole. Il centro è C=(-1/16,-5/16). Gli autovalori di A sono 4 e -2, con relativi autovettori e_1+e_2 e e_1-e_2 . Quindi gli assi sono rette parallele alle bisettrici dei 4 quadranti passanti per C.

Spostando l'origine in C si ottengono nuove coordinate x', y' con x = x' - 1/16 e y = y' - 5/16. In queste coordinate l'equazione della conica diventa

$$(x')^2 + (y')^2 + 6x'y' + \frac{9}{32} = 0.$$

Infine nelle coordinate x'', y'' la matrice A diventa diagonale con gli autovalori sulla diagonale e quindi otteniamo

$$4(x'')^2 - 2(x'')^2 + \frac{9}{32} = 0.$$

2